
US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

NOAA GOES LRIT Mission Specific Data

Introduction

Specifications for the reception and decoding of the GOES Low-Rate Information
Transmission (LRIT) are set forth in the NOAA LRIT Receiver Specification (System
Specifications). The specification contains a GOES mission specific implementation of
the CGMS 03 LRIT/HRIT Global Specification, Issue 2.6, August 12, 1999. While the
GOES LRIT specification seeks to provide developers with the mission specific
implementation of the CGMS 03 specification, it does not include details on some key
aspects of the GOES LRIT transmission. In particular, the CGMS recommendation for
image compression is JPEG whereas GOES LRIT uses lossless Rice compression on
image files. This does not violate the CGMS specification since JPEG is only a
recommendation and other types of compression are allowed. Further issues for
developers of GOES LRIT software can arise in the interpretation of the CGMS
specification vs the GOES LRIT implementation in the transport layer protocol. The
Rice compression algorithm used in GOES LRIT is licensed and not generally available
to terminal developers. However, software has been made available on the NOAA
GOES LRIT Web site to allow developers to perform the image decompression. It is the
intent of this paper to present a simplified view of the steps required to decode the LRIT
data with special emphasis on implementing Rice decompression.

Data Processing

The processes required to obtain an LRIT file from the transmitted data are outlined in
Figures 1 and 3. The physical layer shown in Figure 1 includes a receiver to
downconvert the 1691 MHz received signal to an appropriate IF frequency followed by a
BPSK demodulator to obtain the NRZ-L coded data stream at 293 Ks/s. The
convolutionally encoded data is passed through a rate ½ Viterbi decoder with constraint
length=7, G1=1111001, and G2=1011011 to obtain the final data stream to be decoded.
The data is received in blocks of 8160 bits with each block preceded by a 32 bit pattern
(1ACFFC1DH) for block synchronization. The entire 8192 bit block is the “channel
access data unit” (CADU) in the CGMS specification. The 8160 bits of data have been
randomized to assure sufficient data transitions for the demodulation process. Thus the
first step in decoding the block is to perform data de-randomization. This is
accomplished by bitwise exclusive or-ing the 8160 bits of data with a PN sequence whose
generator polynomial is given by

A sample program for generating the PN sequence and performing the de-randomization
is given in Appendix A. The resulting 8160 bit block is the “coded virtual channel data

h(x)=x8 + x7 + x5 + x3 +1.

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

unit” or CVCDU. The CVCDU is made up of a 6 octet VCDU primary header, 886
octets of VCDU data, followed by 128 octets of Reed-Solomon check symbols. The

Receiver
BPSK Demod

NRZ-L
293 Ks/s

Viterbi Decoder
Rate ½
Length =7 bits
G1=1111001
G2=1011011

1ACFFC1D Randomized Data

32 bits 8160 bits

CADU

PN Sequence Generator
h(x)=x8 + x7 + x5 + x3 + 1

VCDU
Primary
Header

VCDU
Data Zone

Reed-Solomon
Check Symbols

CVCDU

6 octets 886 octets 128 octets

M_PDU header

first header
pointer spare

end of
M_SDU
#(k-1)

M_SDU
#k

M_SDU
#(k+1)

beginning of
M_SDU

#m
���

M_PDU packet zone

5 bit 11 bit 884 octets

M_PDU

packet identification

version type
secondary

header
flag

APID sequence
flag

packet
sequence
counter

packet
length

user
data

sequence control

3 bit 1 bit 11 bit1 bit 2 bit 14 bit 16 bit variable

6 octets 1 … 8192 octets

CP_PDU

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

Reed-Solomon code (255,223) is calculated over the entire 892 octets of VCDU primary
header and VCDU data. Reed-Solomon coding does not actually alter the original data,
thus, under high signal to noise conditions, the VCDU header and data could be used
without R-S decoding. However, to assure minimal data errors and determine the
integrity of the data, it is recommended that the R-S decoding step be performed. Sample
code for implementing the function is given in Appendix A.

The VCDU primary header is shown in Figure 2. It contains information including
spacecraft identifier, version number, a sequential VCDU counter (modulo 16777216),
and a virtual channel identifier (VC ID). If the VC ID is set to 63 then the VCDU is a fill
VCDU and contains no user data. The block is discarded and a new CADU is received
for processing.

The 886 octets in the VCDU contain the “multiplexing protocol data units” (M_PDU) as
shown in Figure 1. The M_PDU contains one or more “multiplexing service data units”
(M_SDU) each of which contains a packet or portion of a packet carrying the user data.
The first 16 bits of the M_PDU contain a “first header pointer” which identifies the offset
(in octets) from the beginning of the M_PDU packet zone to the first M_SDU that
contains a packet with a header (e.g. M_SDU #k in Figure 1.) All data prior to this
packet (if any) is the last portion of data from an M_SDU in a preceding block. M_SDU
packets can span over multiple M_PDU blocks. If the entire M_PDU packet zone
contains data from a previous block (i.e. M_PDU packet zone does not contain a header),
then the “first header pointer” will be set to 2047.

The M_SDU packets contain the fundamental user data packets identified as “CCSDS
path protocol data units” (CP_PDU) in CGMS 03. The structure of these variable length
packets is shown in Figure 1 and repeated in Figure 3. LRIT files are assigned an
“application process identifier” (APID) based on their priority and then broken up into
variable length segments for transmission. Each segment, which can be from 1 to 8190

version
number

VCDU-ID

S/C ID VC ID

VCDU
counter

signaling field

replay flag spare

2 bit 8 bit 6 bit 24 bit 1 bit 7 bit

Figure 2. VCDU Primary Header

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

octets in length, receives a 16 bit CRC error control field at its end resulting in the 1 to
8192 octet user data in the CP_PDU structure shown in Figures 1 and 3. The user data is
concatenated to a 6 octet header containing information about the user data. The header
contains the APID identifier, a sequence flag that identifies whether the packet contains
the first, middle, or last segment of the user data, a packet sequence counter that

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

Primary Header Secondary Headers Data Field

S_PDU
(LRIT File)

packet identification

version type
secondary

header
flag

APID sequence
flag

packet
sequence
counter

packet
length

user
data

sequence control

3 bit 1 bit 11 bit1 bit 2 bit 14 bit 16 bit variable

6 octets 1 … 8192 octets

CP_PDU

Application
Data Field

(possibly compressed)

Packet Error
Control (CRC)

variable
max 8190 octets

2 octets

���

1st packet
sequence = 1 or 3

Last packet
sequence=2

transport header

file counter length
TP_SDU

16 bit 64 bit variable 1 … (264-1) bit

���
Transport

File

Figure 3.

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

increments modulo 16384 for the specified APID, and a packet length field identifying
the number of octets in the user data field minus 1. The CRC checksum is computed over
the variable length “Application Data Field” portion of the CP_PDU user data. The
generator polynomial for the CRC is given by

The function is initialized to “all ones” prior to CRC calculation for each segment. A
coding sample of the CRC calculation is provided in Appendix A.

As the CP_PDU packets arrive for a given APID, the contents of the “Application Data
Field” are concatenated together under control of the sequence flag to form the
Transport File as defined in CGMS 03. The transport file starts with an 80 bit transport
header followed by a variable length Transport Service Data Unit (TP_SDU). The
TP_SDU in turn contains a Service Protocol Data Unit (S_PDU) which is the desired
LRIT file associated with the specified APID.

The CGMS 03 specification is somewhat ambiguous in the description of the transport
file structure. Section 6.2.2 states that the transport file shall be split into blocks of 8190
octets in size with each block receiving a CRC checksum field. However, in the same
paragraph, the statement is made that this results in segments of up to 8192 octets in size.
The NOAA LRIT implementation splits the transport file into variable length segments
with each segment receiving the CRC checksum. These segments then become the user
data portion of the CP_PDU packet.

The 80 bit transport header consists of a 16 bit sequential counter (modulo 216)
incremented with each received transport file and a 64 bit length field indicating the
number of bits in the TP_SDU data field. The length field indicates the number of bits
prior to any data compression. Data compression in the GOES LRIT implementation
occurs at the CP_PDU packet level.

Referring to Figure 3, if the sequence flag in the CP_PDU packet is a “3”, then the user
data contains a complete transport file starting with the 80 bit header followed by a
variable length LRIT file. The LRIT file will contain the mandatory primary header
record (header type 0) followed by one or more secondary header records in turn
followed by application data (if any.) The structure and meaning of these header records
are described in detail in th LRIT specification(s). If the sequence flag is a “1”, then the
user data will contain the transport header and the first portion of an LRIT file which
generally will include the primary and secondary header records. Subsequent
CP_PDU packets will have a sequence flag equal to “0” indicating the user data is a
continuation of the transport file data contents up until the last segment of the file which
will be designated with a sequence flag equal to “2”.

g(x) = x16 + x12 + x5 +1

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

If the transmitted data is not compressed, then the above procedure will lead to a
complete LRIT file in the TP_SDU contents of the transport file. If the transmitted file
contains a Rice compressed image, then decompression of the CP_PDU user data must
occur prior to concatenation in the transport file. To determine if the data is compressed,
the first packet(s) must be decoded to obtain the primary and secondary LRIT header
records. Rice compression is only used on image files, thus, the third field in the LRIT
primary header (i.e. File type code) shown in Figure 4 must be set to a “0” designating
the file is an “image data file” as specified in Table 4-2 of the CGMS 03 specification. If
the file is an image data file, then the LRIT primary header will be followed with a
mandatory Image Structure Record (Header Type 1) in the secondary headers. The
Image Structure Record is reproduced in Figure 5.

size in octets data type contents

1

8

2

4

1 integer, unsigned
integer, unsigned

integer, unsigned

integer, unsigned

integer, unsigned

header type, set to 0
header record length, set to 16
file type code, determining the top level structure of the
file data field
total header length, specifying the total size of all header
records (including this one) in octets

data field length, specifying the total size of the file data
field in bits

Figure 4. Primary Header Record

size in octets data type contents

1

2

2

2

1 integer, unsigned
integer, unsigned
integer, unsigned

integer, unsigned

integer, unsigned

header type, set to 1
header record length, set to 9
number of bits per pixel (1 … 255)

number of columns (1 … 65535)

number of lines (1 … 65535)

Figure 5. Image Structure Record

1 integer, unsigned compression flag (0,1,2)

abbreviation

NB

NC

NL
CFLG

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

If the image data is Rice compressed, then the compression flag, CFLG in the Image
Structure Record will be set to a “1”. For uncompressed data, this value will be “0.” If
the data is Rice compressed, then a third secondary header must be decoded to obtain the
Rice compression parameters. This is the NOAA specific Rice Compression Record
with a header type equal to “131” as shown in Figure 6.

If the Rice Compression Record is missing from the secondary headers, then the
following default values are to be used in the Rice decompression algorithm.

Field Default Value
flags 49
pixelsPerBlock 16
scanLinesPerPacket 1

At the outset it was stated that the Rice compression algorithm used to compress NOAA
LRIT images is licensed and not readily available to developers of LRIT software. To
circumvent this, the “Domain 6 LRIT Reception Software Beta version” posted on the
User Station Software web site includes software that can be used in user code to perform
the decompression. In particular, the class “CriceDecompression” located in the header

Figure 6. Rice Compression Record

size Type Description

1

2

2

1 Uint

Uint

Uint

Uint

Uint

NOAA-specific header
type code for Rice
Compression Header

Header length in octets

Compression option
flags

Number of pixels in
each CDS

Number of compressed
scan lines in one packet

1

Value

Even number, 4 < value < 64

1-255

Field Name

headerType

headerLength

flags

pixelsPerBlock

scanLinesPerPacket

131

7

Sum (bit-wise “or”) of values in
Table 19

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

file “PacketDecompression.h” in the d6/LritRice folder provides a simple means for
decompressing the data. To use the class, the file “LritRice.lib” located in d6/Common
must be included in the build.

The class constructor requires the passing of five parameters for proper initialization as
defined in the following:

The “Mask” parameter is the flags field in the Rice Compression Record shown in
Figure 6. It will typically be the default value of 49 (31H). BitsPerPixel is obtained from
the third field (NB) in the Image Structure Record of Figure 5. The PixelsPerBlock and
ScanLinesPerPacket parameters are the fourth and fifth fields in the Rice Compression
Record, respectively. The PixelsPerScanline parameter is the number of columns (NC)
entry in the Image Structure Record of Figure 5.

To implement the decompression, an instance of the class is first created with the above
parameters passed as arguments.

Recall that the compressed image data is in the “Application Data Field” portion of the
CP_PDU packet user data field shown in Figure 2. To decompress the data, the member
function

is called where dataptr is a pointer to the beginning of the CP_PDU user data field and
datalength is the number of compressed bytes in the field. The CP_PDU “packet
length” field indicates the total number of bytes in the user data minus 1. This includes
the two CRC checksum bytes. Thus, the correct value for datalength in the Decompress
function is simply datalength = packet length – 1.

CRiceDecompression(
 int Mask,
 int BitsPerPixel,
 int PixelsPerBlock,
 int PixelsPerScanline,
 int ScanLinesPerPacket);

CriceDecompression *Rice = new CriceDecompression(flags, NB, PPB, NC, SLPP);

Rice->Decompress(dataptr, datalength)

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

The Rice->Decompress function will return a value of TRUE if it succeeds and FALSE if
an error occurs. If the operation is successful, then two other member functions are
called to retrieve the decompressed data. The function

returns a pointer of type (unsigned char*) to the decompressed data and the function

returns an (unsigned long) count of the number of bytes in the decompressed data. Thus,
for each CP_PDU packet containing Rice compressed data, a suitable routine for
decompression would be

where tppointer is a pointer to the location in the transport file where the decompressed
data is to be concatenated. When the last CP_PDU packet (sequence = 2) is
decompressed, the TP_SDU contents of the transport file will contain the completed,
decompressed LRIT image file. Display of the image (or image segment) follows the
specifications set forth in the LRIT Receiver Specification or CGMS 03. The image
structure including the number of bits per pixel (NB), number of columns in the image
(NC), and the number of lines in the image (NL) are found in the Image Structure
Record shown in Figure 5.

Conclusion

A simplified description of the steps required to decode the NOAA GOES LRIT mission
specific data transmissions into LRIT application files has been presented. The intent is
to provide terminal software developers a visualization of the data flow as it progresses
through the various layers defined by the LRIT system specification(s). NOAA has
posted beta software (Domain 6) on the LRIT Web site that can be used in its entirety to
implement processing and display of received LRIT files. For developers who choose to
write their own receiver specific code, functions are available in the Domain 6 software
to allow implementation of NOAA LRIT specific processes such as Rice decompression
of image files. Examples of the usage of this code are included in the main body of this

Rice->Ptr();

Rice->Size();

Rice->Decompress(dataptr, datalength);
memcpy(tppointer, Rice->Ptr(), Rice->Size());
tppointer + = Rice->Size;

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

paper with more specific examples in the Appendix. It is important to note that the data
flow diagrams (Figures 1 and 3) are simplified examples and the reader must refer to the
NOAA LRIT Receiver Specification and CGMS 03 HRIT/LRIT Global Specification for
the specifics on processing the various data layers.

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

Appendix A

Sample Code Implementations

De-Randomization

Data is received out of the physical layer as blocks of length 8192 bits. Each block starts
with a 32 bit sync pattern with the remaining 8160 bits or 1020 octets representing the
user data. To assure sufficient data transitions in the demodulation process, the data has
been randomized by bitwise exclusive or-ing it with a pseudorandom (PN) pattern
generated using the polynomial

De-randomizing the data requires that it again be exclusive or-ed with an identical PN
sequence.

The CCSDS 101.0-B-6 recommendation for “Channel Telemetry Coding” suggests a
possible implementation of the PN sequence generator described by the following
diagram.

h(x)=x8 + x7 + x5 + x3 +1.

1ACFFC1D Randomized Data

32 bits 8160 bits

CADU

PN Sequence Generator
h(x)=x8 + x7 + x5 + x3 + 1

De-Randomized Data

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

Direct implementation of the diagram in code implies bit-by-bit de-randomization of the
input data stream. For many applications, it is more efficient to de-randomize the data at
a byte level. The following code pre-generates an array of PN characters that are then
sequentially byte-wise exclusive or-ed with the incoming data to perform the de-
randomization.

The 1020 byte table produced by this code is a repeated sequence of the 255 bytes
generated by the randomizing polynomial.

unsigned char pn[1020];
int i,j;
unsigned char fdbk ,randm=0xff;

for(i=0;i<1020;i++)
{
 pn[i]=0;

for(j=0;j<=7;j++)
 {
 pn[i]=pn[i]<<1;

if(randm&0x80) pn[i]++;
 fdbk=randm&0x95;

randm=randm<<1;
if((((fdbk&0x80)^(0x80&fdbk<<3))^(0x80&(fdbk<<5)))^(0x80&(fdbk<<7)))randm++;

 }
}

FF 48 0E C0 9A 0D 70 BC 8E 2C 93 AD A7 B7 46 CE
5A 97 7D CC 32 A2 BF 3E 0A 10 F1 88 94 CD EA B1
FE 90 1D 81 34 1A E1 79 1C 59 27 5B 4F 6E 8D 9C
B5 2E FB 98 65 45 7E 7C 14 21 E3 11 29 9B D5 63
FD 20 3B 02 68 35 C2 F2 38 B2 4E B6 9E DD 1B 39
6A 5D F7 30 CA 8A FC F8 28 43 C6 22 53 37 AA C7
FA 40 76 04 D0 6B 85 E4 71 64 9D 6D 3D BA 36 72
D4 BB EE 61 95 15 F9 F0 50 87 8C 44 A6 6F 55 8F
F4 80 EC 09 A0 D7 0B C8 E2 C9 3A DA 7B 74 6C E5
A9 77 DC C3 2A 2B F3 E0 A1 0F 18 89 4C DE AB 1F
E9 01 D8 13 41 AE 17 91 C5 92 75 B4 F6 E8 D9 CB
52 EF B9 86 54 57 E7 C1 42 1E 31 12 99 BD 56 3F
D2 03 B0 26 83 5C 2F 23 8B 24 EB 69 ED D1 B3 96
A5 DF 73 0C A8 AF CF 82 84 3C 62 25 33 7A AC 7F
A4 07 60 4D 06 B8 5E 47 16 49 D6 D3 DB A3 67 2D
4B BE E6 19 51 5F 9F 05 08 78 C4 4A 66 F5 58

pn[] =

�
�
�

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

De-randomizing each received CADU can then be accomplished with the following
routine

where bufptr is a pointer initially set to the beginning of the CADU randomized data.

Reed-Solomon Decoding

The 1020 octet CVCDU block that results after data de-randomization includes a 6 octet
VCDU header, 886 octets of VCDU data, and a 128 octet field of Reed-Solomon check
symbols. The (255,223) Reed-Solomon code is calculated over the entire 892 octets of
VCDU primary header and VCDU data. The Domain 6 software on the LRIT Web site
includes a class than can be used to simply implement the Reed-Solomon decoding. The
class is included in the files “Reed Solomon.cpp” and “Reed Solomon.hpp” located in the
d6/Common folder. Creating an instance of the class requires the passing of eight
parameters defined by

Definitions of the parameters can be found in the referenced files, however, for the GOES
LRIT transmission, the proper values are:

CReedSolomon(8,16,112,11,0,4,0,1)

By including the file “Reed Solomon.cpp” in the build and the file “Reed Solomon.hpp”
in the header files, the following code can be used to provide data correction.

int i;
PUCHAR bufptr;

for(i=0;i<1020;i++)
 {
 *bufptr=pn[i]^*bufptr;
 bufptr++;
 }

CReedSolomon(int BitsPerSymbol, int CorrectableErrors, int mo, int poa,
 int VirtualFill, int Interleave, int FrameSyncLength, int mode);

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

In the above code, cvcduptr is a pointer to the beginning of the 1020 octet CVCDU
block. Calling the member function “LRITrs.Decode” performs the error correction on
the block.

CRC Error Check

The variable length user data portion of the CP_PDU packet includes a 2 octet CRC
checksum field.

// Header files

#include "Reed Solomon.hpp"

// Global Variables

CReedSolomon LRITrs(8,16,112,11,0,4,0,1);
PUCHAR cvcduptr;

// Main Body

LRITrs.Decode((unsigned char *) cvcduptr);

�
�
�

packet identification

version type
secondary

header
flag

APID sequence
flag

packet
sequence
counter

packet
length

user
data

sequence control

3 bit 1 bit 11 bit1 bit 2 bit 14 bit 16 bit variable

6 octets 1 … 8192 octets

CP_PDU

Application
Data Field

(possibly compressed)

Packet Error
Control (CRC)

i bl

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

The checksum is calculated over the Application Data Field portion of the packet using
the generator polynomial

The function is initialized to “all ones” prior to CRC calculation for each segment. Many
possible implementations of CRC decoding algorithms have been published in the
literature. The technique shown in the following code uses table look-up to speed up the
process. In the code, dataptr is a pointer to the beginning of the CP_PDU user data field
and datalength is the number of bytes in the Application Data Field. The CP_PDU
“packet length” field indicates the total number of bytes in the user data minus 1. This
includes the two CRC checksum bytes. Thus, the correct value for datalength in the call
to the CRC function is simply datalength = packet length – 1.

//Global Variables

unsigned short crcTable[] = {
 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE,
 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485,
 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D,
 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4,
 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC,
 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823,
 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B,
 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12,
 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A,
 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41,
 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8dD68, 0x9D49,
 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70,
 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78,
 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F,
 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067,
 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E,
 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256,
 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D,
 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C,
 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634,
 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB,

g(x) = x16 + x12 + x5 +1

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3,
 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A,
 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92,
 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9,
 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1,
 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0,
};

//Forward declaration of functions

unsigned short CRC(const unsigned char* , int);

//Main Body

�
�
�

unsigned short CRC(const unsigned char* buf, int length)
{

unsigned short Crc=0xffff,ind=0;
 while(length--)
 {
 Crc=(Crc<<8)^crcTable[(Crc>>8)^(unsigned short)buf[ind++]];
 }

return Crc;
}

�
�
�

//CRC Calculation Routine

unsigned short CRCchecksum;

CRCchecksum=CRC(dataptr,datalength);

After the call to the CRC function, the variable CRCchecksum can be compared to the 2
octet packet error control field in the CP_PDU packet to determine the presence of any
packet errors.

Rice Decompression

US Government Disclaimer
The United States Government nor any of its data or content provider shall be liable for any errors in the
content of this document, or for any actions taken in reliance thereon. All data and information contained
herein is provided for informational purposes only, and is the users responsibility if he/she decides to use
or incorporate into their design.

The following code sample is an implementation of the Rice decompression outlined in
detail in the main text of this document. It is assumed that the LRIT primary and
secondary headers have been decoded and the necessary parameters extracted to pass to
the CRiceDecompression functions. The “CriceDecompression” class is located in the
header file “PacketDecompression.h” in the d6/LritRice folder. The “LritRice.lib” file
located in d6/Common must be included in the build.

//Header Files

#include "PacketDecompression.h"

//Global Variables

int flags,NB,PPB,NC,SLPP;

//Main Body

�
�
�

// Decompression routine. dataptr is a pointer to the beginning of the
CP_PDU packet user data field. datalength is the length of the
compressed Application Data Field portion of the packet (user data less
the CRC checksum bytes). datalength is equal to the packet length field
minus 1. tppointer is a pointer to the insertion point of the
decompressed data into the transport file.

CriceDecompression *Rice = new CriceDecompression(flags, NB, PPB, NC, SLPP);

if(!Rice->Decompress(dataptr, datalength))

 {

 //Error handling routine

 }

memcpy(tppointer, Rice->Ptr(), Rice->Size());

tppointer+=Rice->Size;

